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2.0
INTRODUCTION

In this unit we will discuss one of the most basic problems in numerical analysis.  The problem is called a root-finding problem and consists of finding values of the variable x (real) that satisfy the equation f(x) = 0, for a given function f.  Let f be a real-value function of a real variable.  Any real number ( for which f(() = 0 is called a root of that equation or a zero of f.   We shall confine our discussion to locating only the real roots of f(x), that is, locating non-real complex roots of f(x) = 0 will not be discussed.  This is one of the oldest numerical approximation problems.  The procedures we will discuss range from the classical Newton-Raphson method developed primarily by Isaac Newton over 300 years ago to methods that were established in the recent past. 

Myriads of methods are available for locating zeros of functions and in first section we discuss bisection methods and fixed point method.  In the second section, Chord Method for finding roots will be discussed.  More specifically, we will take up regula-falsi method (or method of false position), Newton-Raphson method, and secant method.  In section 3, we will discuss error analysis for iterative methods or convergence analysis of iterative method. 

We shall consider the problem of numerical computation of the real roots of a given equation

f(x) = 0

which may be algebraic or transcendental.  It will be assumed that the function f(x) is continuously differentiable a sufficient number of times.  Mostly, we shall confine to simple roots and indicate the iteration function for multiple roots in case of Newton Raphson method. 

All the methods for numerical solution of equations discussed here will consist of two steps.  First step is about the location of the roots, that is, rough approximate value of the roots are obtained as initial approximation to a root.   Second step consists of methods, which improve the rough value of each root. 

A method for improvement of the value of a root at a second step usually involves a 

process of successive approximation of iteration.  In such a process of successive approximation a sequence {Xn} n = 0, 1, 2, … is generated by the method used starting with the initial approximation xo of the root ( obtained in the first step such that the sequence {X​n} converges to ( as n ( (.  This x​n is called the nth approximation of nth iterate and it gives a sufficiently accurate value of the root (.

For the first step we need the following theorem:

Theorem 1:  If f(x) is continuous in the closed internal [a, b] and f(a) are of opposite signs, then there is at least one real root ( of the equation f(x) = 0 such that a < ( < b.

If further f(x) is differentiable in the open interval (a, b) and either f’(x) < 0 or           f’(x) > 0  in (a, b) then f(x) is strictly monotonic in [a, b] and the root ( is unique. 

We shall not discuss the case of complex roots, roots of simultaneous equations nor shall we take up cases when all roots are targeted at the same time, in this unit. 

2.1
OBJECTIVES

After going through this unit, you should be able to:

· find an approximate real root of the equation f(x) = 0 by various methods;

· know the conditions under which the particular iterative process converges;

· define ‘order of convergence’ of an iterative method; and

know how fast an iterative method converges. 

2.2: SOLUTION OF NONLINEAR EQUATIONS
UNIT 3 Let f(x) be a real-valued function of x defined over a finite interval. We assume it is continuous and differentiable. If f(x) vanishes for some value x = (, say, i.e. f(() = 0, then we say x = ( is a root of the equation f(x) = 0 or that function f(x) has a zero at x = (. We shall discuss methods for finding the roots of an equation f(x) = 0 where f(x) may contain algebraic or transcendental expressions. We shall be interested in real roots only. It is also assumed that the roots are simple (non-repeated) and isolated and well-separated i.e. there is a finite neighbourhood about the root in which no other root exists. All the methods discussed will be iterative type, i.e. we start from an approximate value of the root and improve it by applying the method successively until two values agree within desired accuracy. It is important to note that approximate root is not chosen arbitrarily. Instead, we look for an interval in which only one root lies and choose the initial value suitably in that interval. Usually we have to compute the function values at several points but sometimes we have to get the approximate value graphically close to the exact root.

Method of Successive Substitution (Fixed Point Method)

Suppose we have to find the roots of the equation f(x) = 0. We express it in the form x = ( (x) and the iterative scheme is given as
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where xn denotes the nth iterated value which is known and xn + 1 denotes (n + 1)th approximated value which is to be computed. However, f(x) = 0 can be expressed in the form x = ( (x) in many ways but the corresponding iterative may not converge in all cases to the true value, rather it may diverge start giving absurd values. It can be proved that necessary and sufficient condition for convergence of the scheme is that the modulus of the first derivative of ( (x) i.e. (( (x) at the exact root should be less than 1 i.e. if ( is the exact root then 
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. But since we do not know the exact root which is to be computed we test the condition for convergence at the initial approximation i.e. 
[image: image3.wmf]0

|(x)|1

¢

f<

. Hence, it is necessary that the initial approximation should be taken quite close to the exact root and test the condition before starting the iteration. This method is also known as ‘fixed point’ method since the mapping 
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 maps the root ( to itself since 
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 i.e. ( remains unchanged (fixed) under the mapping 
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Example

Find the positive root of 
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 by method of successive substitution correct upto two places of decimal.

Solution
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To find the approximate location of the root (+ ive) we try to evaluate the function values at different x and tabulate as follows :

	x
	0
	1
	2
	3
	x > 3

	f(x)
	( 8
	( 9
	( 4
	13
	+ ive

	Sign of f(x)
	(
	(
	(
	+
	+


The root lies between 2 and 3. Let us choose the initial approximation as x0 = 2.5.

Let us express f(x) = 0 as 
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 in the following forms and check whether 
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x = 2.5.

(i)
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(ii)
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(iii)
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We see that in cases (i) and (ii) 
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, hence we should discard these representations. As the third case satisfies the condition, 
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 for x = 2.5 we have the iteration scheme as,
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Starting from x0 = 2.5, we get the successive iterates as shown in the table below :

	n
	0
	1
	2
	3

	xn
	2.5
	2.35
	2.33
	2.33


Bisection Method (Method of Halving)

In this method we find an interval in which the root lies and that there is no other root in that interval. Then we keep on narrowing down the interval to half at each successive iteration. We proceed as follows :

(1) Find interval 
[image: image17.wmf]12
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 in which the root of f(x) = 0 lies and that there is no other root in I.

(2) Bisect the interval at 
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 and compute f(x). If | f(x) | is less than the desired accuracy then it is the root of f(x) = 0.
(3) Otherwise check sign of f(x). If sign {f(x)} = sign {f(x2)} then root lies in the interval
[x1, x] and if they are of opposite signs then the root lies in the interval [x, x2]. Change
x to x2 or x1 accordingly. We may test sign of f(x) ( f(x2) for same sign or opposite signs.
(4) Check the length of interval | x1 – x2 |. If an accuracy of say, two decimal places is required then stop the process when the length of the interval is 0.005 or less. We may take the midvalue 
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 as the root of f(x) = 0. The convergence of this method is very slow in the beginning.

Example

Find the positive root of the equation 
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 by bisection method correct upto two places of decimal.

Solution
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Let us find location of the + ive roots.

	x
	0
	1
	2
	> 2

	f(x)
	( 10
	( 5
	14
	

	Sign f(x)
	(
	(
	+
	+


There is only one + ive root and it lies between 1 and 2. Let x1 = 1 and x2 = 2; at x = 1, f(x) is
– ive and at x = 2, f(x) is + ive. We examine the sign of f(x) at 
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 and check whether the root lies in the interval (1, 1.5) or (1.5, 2). Let us show the computations in the table below :

	Iteration No.
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	Sign f(x)
	Sign f(x) ( f(x2)
	x1
	x2

	1
	1.5
	+ 2.375
	+
	1
	1.5

	2
	1.25
	( 1.797
	(
	1.25
	1.5

	3
	1.375
	+ 0.162
	+
	1.25
	1.375

	4
	1.3125
	( 0.8484
	(
	1.3125
	1.375

	5
	1.3438
	( 0.3502
	(
	1.3438
	1.375

	6
	1.3594
	( 0.0960
	(
	1.3594
	1.375

	7
	1.367
	( 0.0471
	(
	1.367
	1.375

	8
	1.371
	+ 0.0956
	+
	1.367
	1.371


We see that 
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We can choose the root as 
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Regula-Falsi Method (or Method of False Position)

In this method also we find two values of x say x1 and x2 where function f(x) has opposite signs and there is only one root in the interval (x1, x2). Let us express the function of y = f(x) and we are interested in finding the value of x where curve y = f(x) intersects x-axis i.e. y = 0. We identify two points (x1, y1) and (x2, y2) on the curve. Then we approximate the curve by a straight line joining these two points. We find the point on the x-axis where this line cuts the x-axis. The equation of the straight line passing through (x1, y1) and (x2, y2) is given by
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The point on x-axis where y = 0 is given by
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Now we check the sign of f(x) and proceed like in the bisection method. That is, if f(x) has same sign as f(x2) then root lies in the interval (x1, x) and if they have opposite signs, then it lies in the interval (x, x2). See Figure 1.


Figure 1 : Regula-Falsi Method, Superscript Shows Iteration Number
Example

Find positive root of 
[image: image28.wmf]32
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 by Regula-Falsi method. Compute upto the two decimal places only.

Solution

It is the same problem as given in the previous example. We start by taking x1 = 1 and x2 = 2. We have 
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; y1 = ( 5 and y2 = 14. The point on the curve are (1, – 5) and
(2, 14). The points on the x-axis where the line joining these two pints cuts it, is given by

I-Iteration
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II-Iteration

Take points (1.26, – 1.65) and (2, 14)
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III-Iteration

Take two points (1.34, – 0.41) and (2, 14)
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IV-Iteration

Take two points (1.36, – 0.086) and (2, 14)
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Since value of x repeats we take the root as x = 1.36.

Secant Method

Like Regula-Falsi method in this method also two values of x, x1 and x2 are chosen in the neighbourhood of the actual root but they may be on the same side or on the opposite side of the root. Then a straight line is drawn through (x1, y1) and (x2, y2) and position of x is found where it intersects the x-axis. Then we take the points (x, y) and (x1, y1) or (x2, y2) and draw straight line and find point of intersection with x-axis and so on. See Figure 2.


Figure 2 : Secant Method – Superscript Denotes Iteration Number

Example

Show four iterations of Secant method for finding the root of the equation 
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 near x = 0 and x = 1. Compute upto two decimal places only.

Solution
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; 
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We have two points on the curve (0, – 10) and (1, – 5) and can draw a secant passing through these points. The point where it cuts x-axis is given by,

I-Iteration
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II-Iteration

Take two points (1, – 5) and (2, 14)
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III-Iteration

Take two points (1, – 5) and (1.26, – 1.65)
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IV-Iteration

Take (1.26, – 1.65) and (1.39, 0.41)
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Newton-Raphson (N-R) Method

The Newton-Raphson’s method or commonly known as N-R method is most popular for finding the roots of an equation. Its approach is different from all the methods discussed earlier in the sense that it uses only one value of x in the neighbourhood of the root instead of two. We can explain the method geometrically as follows :

Let us suppose we want to find out the root of an equation f(x) = 0 while y = f(x) represents a curve and we are interested to find the point where it cuts the x-axis. Let x = x0 be an initial approximate value of the root close to the actual root. We evaluate 
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 (say). Then point (x0, y0) lies on the curve y = f(x). We find 
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 for x = x0, say 
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. Then we may draw a tangent at (x0, y0) given as,
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The point where the tangent cuts the x-axis (y = 0) is taken as the next estimate x = x1 for the root, i.e.
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In general 
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, see Figure 3


Figure 3 : Newton-Raphson Method

Theoretically, the N-R method may be explained as follows :

Let ( be the exact root of f(x) = 0 and let ( = x0 + h where h is a small number to be determined. From Taylor’s series as have,
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Neglecting h2 and higher powers we get an approximate value of h, as 
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. Hence, an approximation for the exact root ( may be written as,
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In general the N-R formula may be written as,
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It is same as derived above geometrically. It may be stated that the root of convergence of N-R method is faster as compared to other methods. Further, comparing the N-R method with method of successive substitution, it can be seen as iterative scheme for
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where
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The condition for convergence 
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 in this case would be
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This implies that 
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Example

Write N-R iterative scheme to find inverse of an integer number N. Hence, find inverse of 17 correct upto 4 places of decimal starting with 0.05.

Solution

Let inverse of N be x, so that we the equation to solve as,
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N-R scheme is
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We take x0 = 0.05.

Substituting in the formula, we get



x1 = 0.0575   ;   x2 = 0.0588   ;   x3 = 0.0588

Hence,   
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Example

Write down N-R iterative scheme for finding qth root of a positive number N. Hence, find cuberoot of 10 correct upto 3 places of decimal taking initial estimate as 2.0.

Solution

We have to solve 
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q

xN

=

 or 
[image: image73.wmf]q

xN0

-=





[image: image74.wmf]qq1

f(x)xN;f(x)qx

-

¢

=-=


The N-R iterative scheme may be written
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For cuberoot of 10 we have N = 10, q = 3.

Hence,
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Taking x0 = 2.0 we get the following iterated values
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Hence, we get 
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Example

Using N-R method find the root of the equation x – cos x = 0 correct upto two places of decimal only. Take the starting value as 
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 (( = 3.1416, ( radian = 180o).

Solution
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N-R scheme is given by
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Taking 
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Upto two places of decimal the root is 0.74.

Note : If starting value is not given, we can plot graphs of y = x and y = cos x and locate their point of intersection which will be root of x – cos x = 0. See Figure 4


Figure 4 : Intersection of y = x and y = cos x


Supplementary material
2.2
ITERATIVE METHODS FOR LOCATING ROOTS 
 

One of the most frequently occurring problem in scientific work is to find the roots of equations of the form:


f(x) = 0

In other words, we want to locate zeros of the function f(x).  The function f(x) may be a polynomial in x or a transcendental function.  Rarely it may be possible to obtain the exact roots of f(x) = 0.  In general, we aim to obtain only approximate solutions using some computational techniques.  However, it should be borne in mind that the roots can be computed as close to the exact roots as we wish through these methods.  We say x*  satisfies f(x) = 0 approximately when (f(x*)( is small or a point x* which is close to a solution of f(x) = 0 in some sense like (x* – (( < ( where ( is a root of 

f(x) = 0. 

To find an initial approximation of the root, we use tabulation method or graphical method which gives an interval containing the root.  In this section, we discuss two iterative methods (i) bisection method and (ii) fixed-point method.   In a later section we shall discuss about the rate of convergence of these methods. 

2.2.1
Bisection Method

Suppose a continuous function f, defined on the interval [a, b], is given, with f(a) and f(b) of opposite signs, i.e. f(a) f(b) < 0, then by Intermediate Value Theorem stated below, there exists a number ( on the real line such that a < ( < b, for which f(() = 0. 

Theorem 2 (Intermediate-value Theorem):  If the function f is continuous on the closed interval [a, b], and if f(a) ( y ( f(a), then there exists a point c such that                 a ( c ( b and f(c) = y.

The method calls for a repeated halving of subintervals of [a, b] and, at each step, locating the “half” containing (.  To start with, a1 = a and b1 = b, and let (1 be the mid point of [a, b], that is (1 = 
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(a1 + b1).    If  f((1) = 0, then ( = (1.  If not, then  f((1) has the same sign as either f(a1)  or f(b1).  If f(a1) f((1) < 0, then root lies in (a1, (1).   Otherwise the root lies in ((1, b1).   In the first case we set  a2 = a1 and  b2 = (1 and in the later case we set a2 = (1 and  b2 = b1.   Now we reapply the process to the interval (a2, b2).   Repeat the procedure until the interval width is as small as we desire.  At each step, bisection halves the length of the preceding interval.  After n steps, the original interval length will be reduced by a factor 
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Figure 1: Bisection Method

We now mention some stopping procedures that could be applied to terminate the algorithm.  Select a tolerance ( > 0 and generate (1, (2, … (n until one of the following conditions is met:

(i)
((n – (n–1( < (,




(2.2.1)  

(ii)
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(2.2.2)

(iii)
(f((n)( < ε





(2.2.3)

While applying bisection method we repeatedly apply a fixed sequence of steps.  Such a method is called an Iteration method. 

However, it is pertinent to mention that difficulties can arise using any of these stopping criteria.  For example, there exist sequence {(n} with the property that the differences (n – (n–1 converge to zero while the sequence itself diverges.  Also it is possible for f((n) to be close to zero while (n differs significantly from (.  The criteria given by (2.2.2) is the best stopping criterion to apply since it tests relative error. 

Though bisection algorithm is conceptually clear, it has significant drawbacks.  It is very slow in converging. But, the method will always converge to a solution and for this reason it is often used to obtain a first approximation for more efficient methods that are going to the discussed. 

Theorem 3: Let f ( C [a, b] and suppose f(a).f(b) < 0.  The bisection procedure generates a sequence {(n} approximating ( with the property, 

((n – (( ( 
[image: image92.wmf]n
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Now we illustrate the procedure with the help of an example.

Example 1

Find the least positive root of equation.

f(x) = x3 + 4x2 – 10 = 0

Check that f(x) has only one root in the interval in which this least positive root lies.  Find (4 by bisection algorithm.

Solution

Consider the following tables of values.

	X
	0
	1
	2

	f(x)
	–10
	–5
	14


Take a1 = 1, b1 = 2, since f(a1) f(b1) < 0.

We give the four iterations in the following tabular form.

	N
	an
	bn
	(n
	f((n)

	1
	1
	2
	1.5
	   2.375

	2
	1
	1.5
	1.25
	– 1.79687  

	3
	1.25
	1.5
	1.375
	   0.16211

	4
	1.25
	1.375
	1.3125
	– 0.84839

	5
	1.3125
	1.375
	1.34375
	– 0.35098


After four iterations, we have (4 = 1.3125 approximating the root ( with an error  

(( – (4(( (1.375 – 1.325( = .050 and since 1.3125 < (.
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That is, the approximation is correct to at least 2 significant digits.

Remarks 1:  Generally the first stage methods for location of the roots of f(x) = 0 are (i) Tabulation method and (ii) Graphical method.  The method of tabulation is very crude and labourious and we have used it in the above example to some extent in locating the least positive root of f(x) = 0.   In graphical method we plot the graph of the curve y = f(x) on the graph paper and the points where the curve crosses the x-axis gives approximate values of the roots.

2.2.2
Fixed-point Method (or Method of Interation)

This method is also known as Method of Successive Approximations or Method of Iteration.   In this method, we write the equation f(x) = 0.  

For example x3 – x – 1 = 0 can be written as,

x =  
[image: image99.wmf]3
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+


or 
x =  
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x

x
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or 
x =  
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x
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Now solving f(x) = 0 is equivalent to solving x = g(x).

Each such g(x) given above is called an iteration function.  In fact, these are infinite number of ways in which the original equation f(x) = 0 can be written as x = g(x).  Out of all these functions where one is to be selected, will be discussed in the following analysis.

Definition 1:  A number ( is called a fixed point of g(x) if g(() = ( and g is called the iteration function. 

Our problem is now to find out fixed point(s) of g(x).  Graphically x = g(x) is equivalent to solving y = x and y = g(x). 
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Figure 2: Fixed Point Method

Once an iteration function is chosen, to solve x = g(x), we start with some suitable value x0 close to the root (how to choose this will be explained) and calculate 

x1 = g(x0) (the first approximation), then x2 = g(x1) (second approximation) and so on.  

In general 


xn+1 = g(xn), n = 0, 1, 2 …

The sequence {xn} converges (under some suitable conditions on g) to a number ( (say).  If g is continuous then this gives ( = g((), that is, ( is a fixed point of g(x). 

Concerning the existence, uniqueness of a fixed point and convergence of the sequence, we state a theorem below:

Theorem 4 (Fixed Point Theorem):  Let iteration function g(x) be defined and continuous on a closed interval I = [a, b].  suppose further that g(x) satisfies the following:

(i) g(x) ( I for all ( I

(ii) g(x) is differentiable on I = [a, b]  

and there exists a non-negative number k < 1 such that for all x ( I, (g((x)( ( k < 1.

Then 

(a) g(x) has a fixed point (,

(b) the fixed point is unique, and 

(c) the sequence {x1} generated from the rule xn+1 = g(xn) converges to (, the fixed point of g(x), when x0 ( [a, b]

Proof: (a) Existence:   Suppose g(a) = a or g(b) = b, then there is nothing to be proved.  So, suppose g(a) ( a and g(b) ( b.  Then g(a) > a and g(b) < b since g(x) ( I for all x ( I.

Consider h(x) = g(x) – x

Then h(a) = g(a) – a > 0 and 

         h(b) = g(b) – b < 0

Also h(x) is continuous on I since g(x) is so.  Hence by Intermediate Value Theorem, there exists a number (, a < ( < b such that h(() = 0 (
g(() – ( = 0, i.e., g(() = (
Hence g(x) has a fixed point in I.  

(b)
Uniqueness:
From (2.2.4)

h((x) = g((x) – 1,  but (g((x)( ( k < 1

Hence h((x) < 0.

Therefore, h(x) is a decreasing function and it crosses x-axis only once, i.e. h(x) vanishes only once in I.   

Therefore g(x) – x = 0 only for unique value of x in (a, b).  Hence uniqueness.

(c)
Convergence:  Let ( be the fixed point of g(x).  We have


( = g(() and xn+1 = g(xn).

Let en+1 = ( – xn+1 = g(() – g(xn) = g(((n)  (( – xn), where (n lies between xn and (, that is, en+1 = g(((n)en.

Thus, we have (en+1( ( k (en(.  Using this repeatedly

(en(( kn (e0(
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(The sequence {xn} converges to the number ()

Hence proved.

Thus, it may be noted that the iterative scheme xn+1 = g(xn) converges under the condition (g((x)( < 1, x ( [a, b].

Example 2

For x3 – x – 1 = 0, find a positive root by the fixed point method.  Find minimum number of iterations so that nth approximate xn is correct to 4 decimal places. 

Solution

Write x = 
[image: image105.wmf]3
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 = g(x).
The root lies between 1 and 2 since f(1) = –1 and f(2) = 3. 

Also g(1) – 1 = 
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       g(2) – 2 = 
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Since g((x) = +ve, therefore g(x) is increasing.
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Hence, g(x) ( I for all x ( I.

Therefore, xn+1 = 
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generates a sequence of numbers which converges to a fixed point of g(x), (starting with xo ( I).

We have k =  
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(en( ( kn (en( and (eo(< 1.   Hence for the desired accuracy we have 
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Remark 2: In the following figures we observe the importance of g((x) in the neighbourhood of a fixed point (.
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Figure 3 

In the neighbourhood of (,(g((x)(>1 (the sequences converge in these cases Fig. 3).
In the neighbourhood of (, (g((x)( < 1 (the sequences converge in these two cases Fig. 4).
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Figure 4

Remark 3: In numerical problems, one may follow the following procedure to find an interval [a, b]. 

In order to use this method one needs only to see if (g((x)(<1 at a point in the neighbourhood of the root.  Therefore, determining an interval I is not necessary.

Choose an interval [a, b] by some trial and check for the following:

(i) a – g(a) and b – g(b) must be of opposite sign (with b – g(b) > 0).

(ii) (g((x)( ( k < 1 for x ( [a, b]

(iii) g((x) is continuous on [a, b]. 

If above conditions are not satisfied try for a smaller interval and so on. 

Example 3

Find the smallest positive root of e–x – cos x = 0 by the fixed point method. 

Solution

To locate the smallest positive root, we draw the figures of 

  
y = e–x and y = cos x
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          Figure 5                                                                                                   Figure 6

Figure shows that the desired root lies between 0  and 
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Now let us try x =  cos–1 (e–x) = g(x) 
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To make this  less than 1, we must choose  e2x  – 1 > 1, that is, e2x > 2.   This gives 

x > 
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 ln2 This suggest that we should take the suggested interval 

(
[image: image128.wmf]2

1

ln2, 
[image: image129.wmf]2

π
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Derivative of g(x) implies that g(x) is an increasing function.

 

g(x) = g(ln2) =  cos–1 (e–ln2) 


= cos–1 
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Hence all the sufficient conditions of the Theorem 4 are satisfied.

Now further, suppose that we want to find minimum number of iteration required to get 4 decimal place accuracy.   Let n be the minimum number of iterations required for the desired accuracy. 
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Example 4: Find the iteration function and interval I = [a, b] which satisfy the conditions of the theorem of fixed point to find the smallest positive root of 

x = tan x.

Solution:

We rewrite the equation  x = tan x as 
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, the sequence generated by the fixed-point iteration method will converge. 

Remark 5:
If 
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Remark 6:  If 
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Remark 7: The conditions mentioned in fixed-point theorem are sufficient but not necessary.    

Now we discuss one example, which is very simple but conveys the fact that if a function f(x) has more zeros i.e. f(x) = 0 has more than one real root, then we may have to consider different g(x) for different roots.

Example 5: Find the iteration function g(x) and corresponding interval to get the two roots 1 and  2 by fixed  point iteration  method for the equations


x2 – 3x + 2 = 0

Solution:

 (a)
For the root x = 1 if we consider   x = 
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g((1) = 1.  Hence we choose g(x) = 
[image: image183.wmf]3

2

x

2

+

, I
[image: image184.wmf]ú

û

ù

ê

ë

é

=

4

5

,

2

1

1



g((x) = 
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 Hence all the conditions of the theorem are satisfied.

(b)
Now for the other root 2, consider 


If g(x) = 
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g((x) = 
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Hence all the conditions for the fixed point theorem are satisfied. 

In the following two examples, we use the corollary to the fixed point theorem (Theorem 4). 

Example 6:  The equation f(x) = x4 – x – 10 = 0 has a root in the interval [1, 2].  Derive a suitable iteration function ((x) such that the sequence of iterates obtained from the method xk+1 = ( (xk), k = 0, 1, 2, ... converges to the root of f(x)=0.   Using this method and the initial approximation x0 = 1.8, iterate thrice.

Solution:   Choose ( (x) = 
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Given x0 = 1.8
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Example 7:  The equation f(x) = x3 – 5x +1 = 0 has a root in the interval [0, 1].  Derive a suitable iteration function ((x), such that the sequence of iterates obtained from the formula xk+1 = ((xk), k = 0, 1, 2, ...  converge to the root of f(x)=0.   Using this formula and the initial approximation x0 = 0.5, iterate thrice.

Solution:   ( (x) = 
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With x0 = 0.5, x1 = 0.225 = 0.23, x2 = 0.202. 
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 2.3
CHORD METHODS FOR FINDING ROOTS

In the previous section we have introduced you to two iterative methods for finding the roots of an equation f(x) = 0, namely bisection method and fixed point method. In this section we shall discuss three iterative methods:  regula-falsi, Newton-Raphson, and Secant methods.  In the next section we shall discuss the efficiency of these methods. 

2.3.1
Regula-falsi Method 

This method attempts to speed up bisection method retaining its guaranteed convergence.  Suppose we want to find a root of the equation f(x) = 0 where f(x) is a continuous function.   We start this procedure also by locating two points xo and  x1 such that f(xo)f(x1) < 0.  

Let us consider the line joining (xo, f(xo)) and (x1, f(x1)).   This line cuts the x-axis at some point, say x2.  We find f(x2).    If f(x2)f(x0) < 0, then we replace x1 by x2 and draw a straight line connecting (x2, f(x2)) and {xo, f(xo)}.  If  f(x2) and f(xo) are such that  f(x2)f(x0) > 0, then x0 is replaced by x2 and draw a straight line connecting (x1, f(x1)) and (x2, f(x2)).    Where the straight line crosses x – axis.  that print gives x3.   In both the cases, the new interval obtained is smaller then the initial interval.   We repeat the above procedure.   Ultimately the sequence is guaranteed to converge to the desired root. 
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The equation of the chord PQ is y – f(x0) = 
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This cuts x-axis at the point x2 given by 

0 – f(xo) = 
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i.e. x2 = 
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In general, xr+1 = 
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If f(x2) = 0, then x2 is  the required root.  If  f(x2) ( 0 and f(xo)f(x2) < 0, then the next approximation lies in (xo, x2).   Otherwise it lies in (x2, x1).  Repeat the process till  
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Example 8:  The equation 2x3 + 5x2 + 5x + 3 = 0 has  a root in the interval [–2, –1].  Starting with xo = –2.0 and x1 = –1.0 as initial approximations, perform three iteration of the Regula-falsi method.

Solution:


f(–2) = –16 + 20 – 10 + 3 = –3


f(–1) = –2 + 5 –  5 + 3 = 1, and f(–2) f(–1) < 0

x2 =  
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, i.e.,


x2 = –1.25 (First iteration)


f(x2) = 
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The root lies in (xo, x2)


x3 =  –1.384 or 1.39 (Second iteration) since


 x3 = 
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For next iteration find f(x3) and proceed in similar fashion. 

2.3.2
Newton-Raphson Method

Newton-Raphson method or N–R method in short. 

It can be introduced by basing it on the Taylor’s expansion as explained below.  Let xo be an initial approximation and assume that  xo is close to the exact root  ( and 

f’(xo) ( 0.   Let ( = xo + h where h is a small quantity in magnitude.  Let f(x) satisfy all the conditions of Taylor’s theorem.   Then 

 f(xo+ h) = f(xo) + h f’(xo)  + .....

The method is derived by assuming that the term involving h2 is negligible and that  f(xo) + h f((xo)  = 0  i.e.  f(xo) + (( - xo)f((xo)  = 0 

i.e. ( ( xo - 
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i.e. x1 = xo - 
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Geometrically the next approximation,  x1, is the abscissa of the point of intersection of the tangent PT and the x-axis in Figure 8.

The iteration scheme is  

. xn+1 = xn – 
[image: image234.wmf])
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Figure 8 : Newton – Raphson Method

N-R  method is an extremely powerful technique, but it has a major difficulty – the need to know the value of the derivative of f at each approximation or iteration.  derivative evaluation, we discuss a slight variation, known as Secant Method next. 

Example 9:  Newton-Raphson method is used to find the pth root of a positive real number R.    Set up the iteration scheme.   Perform three iterations of the method for R=16.0, p =3, starting with the initial approximation 2.0.

Solution: Let us denote pth root of R by x i.e.


x = R 1/p  or   xp ─ R = 0.


f( (x) = pxp─1.

Newton-Raphson Iteration scheme is 


xk+1  = 
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On simiplification we get xk+1 = 
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For R = 16, p = 3, xo = 2, we get x1 =  
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Remark 8:  If a root is repeated m times, the N─R method is modified as
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Example 10 : The quadric equation x4 – 4x2 + 4 = 0 has a double root.   Starting with xo = 1.5, compute two iterations by Newton-Raphson method.

Solution: For m-repeated root of f(x) = 0, the iteration scheme in case of Newton-Raphson method is given by:


xk+1  = 
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In this case, we have 

xk+1  = 
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 (since m =2 and f(x) =  
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With xo = 1.5, we have 

x1 =  
[image: image245.wmf]1.41

12

17

2

3

16

1

2

2

3

=

=

´

-


Example 11: Perform two iterations of the Newton-Raphson method to find an approximate value of 
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 starting with the initial approximation xo = 0.02

Solution: Suppose we want to find the reciprocal of the number N. 

Let f(x) =  
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Then  f’(x) =  
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In this case we xk+1   = 2xk – 15 
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,   k = 0, 1,2.  This gives x1 = 0.034, x2 = 0.051, 

x3 = 0.063, etc. 

2.3.3
Secant Method

This method is a modification of the regula-falsi method and retains the use of secants throughout, but dispenses with the bracketing of the root.   Given a function f(x) and two given points xo and x1,

We compute,


x2 =  
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Figure 9 

Above figure illustrates how xn+1   is obtained.    

Example 12:  Apply the Secant method to find a root of the equation 

2x3 + 3x2 + 3x + 1 = 0.  Take the initial approximations as xo  =  –0.2 and x1  = –0.4.

Solutions:

Let f(x) =  2x3 + 3x2 + 3x + 1


f(–0.2) = 0.504


f(–0.4) = 0.152


x2  = 
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You may now solve the following exercises:

E1)
Using the Newton-Raphson method, find the square root of 10 with initial approximation xo  = 3.

E2)
A fixed point iteration to find a root of 3x3 + 2x2 + 3x + 2 = 0 close to 


xo  = –0.5 is written as xk+1  = – 
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Does this iteration converge?  If so, iterate twice.  If not, write a suitable form of the iteration, show that it converges and iterate twice to find the root.

E3)
Do three iterations of Secant method to find an approximate root of the equation.


3x3 – 4x2 + 3x – 4  = 0 


Starting with initial approximations xo  = 0 and x1  = 1.

E4)
Do three iterations of fixed point iteration method to find the smallest positive roots of x2 – 3x + 1  = 0, by choosing a suitable iteration function, that converges.  Start with  xo  = 0.5.

E5)
Obtain the smallest positive root of the equation of x3 – 5x + 1  = 0 by using 3 iterations of the bisection method. 

E6)
Starting with xo  = 0, perform two iterations to find an approximate root of the equation x3 – 4x + 1  = 0, using Newton-Raphson method. 

E7)
Do three iterations of the Secant method to solve the equation


x3  + x –  6  = 0,


starting with xo  = 1 and x2  = 2.

E8)
Apply bisection method to find an approximation to the positive root of the equation.


2x – 3  Sinx – 5 = 0


rounded off to three decimal places.

E9)
It is known that the equation x3  + 7x2 +  9  = 0 has a root between –8 and  


 –7.  Use the regula-falsi method to obtain the root rounded off to 3 decimal places.  Stop the iteration when 
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E10)
Determine an approximate root of the equation 


Cosx – xex = 0


using Secant method with the two initial approximations as xo  = 0 and 


x1  = 1.  Do two iterations 

2.4
ITERATIVE METHODS & CONVERGENCE CRITERIA

Let {xn} be a sequence of iterates of a required root ( of the equation f(x) = 0, generated by a given method. 

The error at the nth iteration, denoted by en is given by 



en = ( – xn
The sequence of iterates {xn} converge to ( if and only if en  ( 0 as n ( 
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 otherwise the sequence of iterates diverges.

For each method of iteration considered by us, we shall discuss conditions under which the iteration converges.

Let x0, x1, x2, etc be a sequence generated by some iterative method. 

2.4.1
Order of Convergence of Iterative Methods

Definition 2:  If an iterative method converges, that is, if {xn} converges to the desired root 
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(C does not depend on n)

then p is called the order of convergence of the method and C is called the asymptotic error constant.  An iterative method with higher order of convergence than 1 is expected to converge rapidly.    If p = 1, 2, 3, …,   then the convergence is called linear, quadratic, cubic… respectively. 

(i)
For the Fixed Point Iteration method the order of convergence is generally 1, that is, it is of first order (convergence is linear).

(ii)
For the Newton-Raphson method, with xo near the root, the order of convergence is 2, that is, of second order  (convergence is quadratic).

(iii)
For the Secant Method order of convergence is 1.618 
[image: image264.wmf]»

 1.62 but it is not guaranteed to converge.

The bisection method is guaranteed to converge, but convergence is slow.  Regula-falsi method is guaranteed to converge.  However, it is slow and order of convergence is 1. 

2.4.2
Convergence of a Fixed Point Method
Theorem 5:

If g’(x) is continuous in some neighbourhood of the fixed point 
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 of g, then the fixed point method converges linearly provided g’(
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) ( 0.
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en+1 =  en g’(
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Since g’(x) is continuous in a neighbourhood of 
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Therefore, fixed point method converges linearly.

Note: Smaller the value of 
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 faster would be the convergence.

Theorem 6:  If g”(x) is continuous in some neighbourhood of the fixed point 
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of g, then the fixed point method converges quadratically, provided g’(
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Here p = 2, hence convergence is quadratic.

Fixed-point iteration is effective when it converges quadratically, as in Newton-Raphson method discussed below. 

N─R Method
We define for equation f(x) = 0 an iterative function g(x) as


g(x) = x –  
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, then the method is called Newton’s method.  We state a theorem without proof which suggests an interval in which if xo is taken then Newton’s method converges.  We generate the sequence {xn}as xn+1  = xn – 
[image: image303.wmf](

)

(

)

,

x

f'

x

f

n

n

n =1, 2, 3, …

2.4.3
Convergence of Newton’s Method

Theorem 7:
Suppose we are to solve f(x) = 0.  If  f’(x)   ( 0 and f”(x)  is continuous on the closed finite interval [a, b] and let the following conditions be satisfied:

(i)
f(a) f(b) < 0

(ii)
f”(x)  is either ( 0  or ( 0 for all x ( [a, b]

(iii)
At the end points a, b
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Then Newton’s method converges to the unique solution 
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 of f(x) = 0 in [a, b] for any choice of x0 ( [a, b].

Theorem 8:  Let f(x) be twice continuously differentiable in an open interval containing a simple root  
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 of f(x) = 0.  Further let f"(x)  exists in neighbourhood of.  Then the Newton’s method converges quadratically.
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By Taylor’s formula, we have 

en+1 = 
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Hence the Newton’s Method converges quadratically if of xo is chosen sufficiently close to 
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2.4.4
Rate of Convergence of Secant Method
Suppose  f(x) = 0 is to be solved.  Consider the curve y = f(x).
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Figure 10
Let the chord AB through the points A(xn–1, f(xn–1)) and B (xn, f(xn)) be drawn.   Suppose this intersects x–axis at C.  Denote this value of x by  xn+1.   That is

 y – f(xn-1) = 
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xn+1 = xn–1 – 
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This is known as secant method.  The sequence {xn} is generated with starting points x0, x1.   We get x2, reject x0, and use x1, x2 to get  x3 and so on. 

Let en+1 = 
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Equating powers of p, on both sides we get 
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p = 1.618.

Now after comparing the rate of convergence of fixed point method, N─R Method and Secant method, we find that secant is faster than fixed point month and N─R method is faster than secant method.  For further qualitative comparison refer the books mentioned. 

Apart from the rate of convergence, the amount of computational effort required for iteration and the sensitivity of the method to the starting value and the intermediate values, are two main basis for comparison of various iterative methods discussed here.  In the case of Newton’s method, if f ( (x) is near zero anytime during the iterative cycle, it may diverge.    Furthermore, the amount of computational effort to compute f(x) and f  (( (x) is considerable and time consuming.   Whereas the fixed point method is easy to programme. 

You may now solve the following exercises.
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Let M denote the length of the initial interval 
[image: image368.wmf][

]

0

0

b

,

a

.   Let 
[image: image369.wmf](

)

...

,

,

3

1

0

x

x

x

 represent the successive midpoints generated by the bisection method.   Show that 
[image: image370.wmf]2

i

i

1

i

2

M

x

x

+

+

=

-


Also show that the number n of iterations required to generate an approximation to a root to an accuracy 
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does converge quadratically.
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The quadratic equation 
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and comment on the order of convergence from your results. 
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The following are the five successive iterations obtained by the Secant method to find the real positive root of the equation 
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	2
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	4
	5
	6
	7
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If 
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2.5
SUMMARY  

In this unit we have covered the following points:

The methods for finding an approximate solution of equation in one variable involve two steps:

(i) Find an initial approximation to a root.

(ii) Improve the initial approximation to get more accurate value of the root. 

The following iterative methods have been discussed:

(i) Bisection method

(ii) Fixed point iteration method 

(iii) Regula-falsi method

(iv) Newton-Raphson method

(v) Secant method

We have introduced the convergence criterion of an iteration process.

We have obtained the order/rate of convergence for the iterative methods discussed. 

Finally we have given a comparative performance of these methods. 

2.6
SOLUTIONS/ANSWERS
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 x = 
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Hence iteration does not converge.
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Hence in this case iteration converges


First iteration x1  = –0.708


Second iteration x2  = –0.646

E3)
f(x) = 3x3 – 4x2 + 3x – 4,     xo  = 0,   x1  = 1.


 xn+1  = 
[image: image412.wmf](

)

(

)

(

)

(

)

,

1

1

1

-

-

-

-

-

n

n

n

n

n

n

x

f

x

f

x

f

x

x

f

x

     n = 1, 2, 3


This gives x2  = 2,   x3  = 1.167, x4  = 1.255 
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Root lies in [0, 1].  We take. 
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Starting with x0  = 0.5, we have
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E5)
f(0) > 0 and f(1) < 0.  The smallest positive root lies in ]0, 1[.

	No. of bisection
	Bisected value xi
	f(xi)
	Improved interval

	1

2

3
	0.5

0.25

0.125
	– 1.375

– 0.09375

0.37895
	]0,0.5[

]0,0.25[

]0.125, 0.25[


It is enough to check the sign of f(x0) – the value need not be calculated.

The approximate value of the desired root is 0.1875.

E6)
Here f(x) = x3 – 4x + 1, x0  = 0.


The iteration formula is  
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n = 1, 2, 3, …


This gives 
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E8)
Here f(x) =  2x – 3  Sinx – 5   

	x
	0
	1
	2
	2.5
	2.8
	2.9

	f(x)
	– 5.0
	– 5.51224
	– 3.7278
	– 1.7954
	– 0.4049
	0.0822



Thus a positive root lies in the interval [2.8, 2.9].

	No. of bisection
	Bisected value 
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Similarly 
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The iterated values are presented in tabular form below:

	No. of intersections
	Interval
	Bisected value 
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	The function value 
[image: image432.wmf](

)

i

x

f



	1

2

3

4

5

6
	] –8, –7[

] –8, –7.1406[

 
	–7.1406

–7.168174


	1.862856

0.358767

 



Complete the above table.  You can find that the difference between the 5th and 6th iterated values is 
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signaling a stop to the iteration.  We conclude that –7.175 is an approximate root rounded to the decimal places.

E10)
Here  
[image: image434.wmf],

xe

cosx

f(x)

2

-

=

 
[image: image435.wmf]0

x

0

=

and
[image: image436.wmf]1

x

1

=




[image: image437.wmf]78

0.31466533

)

f(x

)

f(x

)

f(x

x

)

f(x

x

x

0

1

0

1

1

0

2

=

-

-

=




[image: image438.wmf]66

0.44672814

)

f(x

)

f(x

)

f(x

x

)

f(x

x

x

1

2

1

2

2

1

3

=

-

-

=


E11)
Starting with bisection method with initial interval  
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In case we have for a simple root 
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E13)
f(1.5) = 5.0625 – 9 + 4 = .0625


f’(1.5) = 13.5 – 12  = 1.5

With 
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We have the following results in tabular form:

	n
	1
	2
	3
	4
	5

	en
	0.1580513
	0.0716060
	0.012884
	0.0008679
	0.0000101
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    Hence agreement is good for n = 4. 

E15)
Here M = 
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Here 
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